
Applying Deep Neural Networks to Financial
Time Series Forecasting

Allison Koenecke

Abstract For any financial organization, forecasting economic and financial vari-
ables is a critical operation. As the granularity at which forecasts are needed in-
creases, traditional statistical time series models may not scale well; on the other
hand, it is easy to incorrectly overfit machine learning models. In this chapter, we
will describe the basics of traditional time series analyses, discuss how neural net-
works work, show how to implement time series forecasting using neural networks,
and finally present an example with real data from Microsoft. In particular, Mi-
crosoft successfully approached revenue forecasting using deep neural networks
conjointly with curriculum learning, which achieved a higher level of precision than
is possible with traditional techniques.

1 Introduction to Time Series Analysis

Time series are simply series of data points ordered by time. We first discuss the
most commonly-used traditional (non-neural network) models, and then comment
on pitfalls to avoid when formulating these models.

1.1 Common Methods for Modeling

1.1.1 Stationary Time Series

Time series analyses can be classified as parametric or non-parametric, where the
former assumes a certain underlying stationary stochastic process, whereas the lat-
ter does not and implicitly estimates covariance of the process. We mostly focus on

Institute for Computational & Mathematical Engineering, Stanford, California, USA, e-mail:
koenecke@stanford.edu

1

koenecke@stanford.edu

2 Allison Koenecke

parametric modeling within this chapter. Note that there are trade-offs in dealing
with parametric modeling. Specifically, significant data cleaning is often necessary
to transform non-stationary time series into stationary data that can be used with
parametric models; tuning parameters is also often a difficult and costly process.
Many other machine learning methods exist, such as running a basic linear regres-
sion or random forest using time series features (e.g., lags of the given data, times
of day, etc.).

Stationary time series have constant mean and variance (that is, statistical prop-
erties do not change over time). The Dickey-Fuller test [1] is used to test for sta-
tionarity; specifically, it tests the null hypothesis of a unit root being present in an
autoregressive model.

Autoregressive models are regressions on the time series itself, lagged by a certain
number of timesteps. An AR(1) model, with a time lag of one, is defined as yt =
ρyt−1 + ut , for yt being the time series with time index t, ρ being the coefficient,
and ut being the error term.

If ρ = 1 in the autoregressive model above, then a unit root is present, in which
case the data are non-stationary. Suppose we find that this is the case; how can we
then convert the time series to be stationary in order to use a parametric model?
There are several tricks to doing this.

If high autocorrelation is found, one can instead perform analyses on the first
difference of the data, which is yt−yt−1. If it appears that the autocorrelation is sea-
sonal (i.e., there are periodic fluctuations over days, months, quarters, years, etc.),
one can perform de-seasonalization. This is often done with the STL method (Sea-
sonal and Trend Decomposition using Loess) [2], which decomposes a time series
into its seasonal, trend, and residual parts; these three parts can either additively
or multiplicatively form the original time series. The STL method is especially ro-
bust because the seasonal component can change over time, and outliers will not
affect the seasonal or trend components (as they will mostly affect the residual com-
ponent). Once the time series is decomposed into the three parts, one can remove
the seasonality component, run the model, and post hoc re-incorporate seasonal-
ity. While we focus on STL throughout this chapter, it is worth mentioning that
other common decomposition methods in economics and finance include TRAMO-
SEATS [3], X11 [4], and Hodrick-Prescott [5].

Recall that stationarity also requires constant variance over time; the lack thereof
is referred to as heteroskedasticity. To resolve this issue, a common suggestion is to
instead study log(yt), which has lower variance.

1.1.2 Common Models

Moving average calculation simply takes an average of values from time ti−k
through ti, for each time index i > k. This is done to smooth the original time series
and make trends more apparent. A larger k results in a smoother trend.

Applying Deep Neural Networks to Financial Time Series Forecasting 3

Exponential smoothing non-parametrically assigns exponentially decreasing weights
for historical observations. In this way, new data have higher weights for forecast-
ing. Exponential smoothing (ETS) is explicitly defined as

st = αxt +(1−α)st−1, t > 0 (1)

where the smoothing algorithm output is st , which is initialized to s0 = x0, and xt
is the original time series sequence. The smoothing parameter 0≤ α ≤ 1 allows one
to set how quickly weights decrease over historical observations. In fact, we can per-
form exponential smoothing recursively; if twice, then we introduce an additional
parameter β as the trend smoothing factor in “double exponential smoothing.” If
thrice (as in “triple exponential smoothing”), we introduce a third parameter γ as
the seasonal smoothing factor for a specified season length. One downside, though,
is that historical data are forgotten by the model relatively quickly.

ARIMA is the Autoregressive Integrated Moving Average [6], one of the most
common parametric models. We have already defined autoregression and moving
average, which respectively take parameters AR(p) where p is the maximum lag,
and MA(q) where q is the error lag. If we combine just these two concepts, we
get ARMA, where α are parameters of the autoregression, θ are parameters of the
moving average, and ε are error terms assumed to be independent and identically
distributed (from a normal distribution centered at zero). ARMA is as follows:

Yt −α1Yt−1− ...−αpYt−p = εt +θ1εt−1 + ...+θqεt−q (2)

ARMA can equivalently be written as follows, with lag operator L:

(1−
p

∑
i=1

αiLi)Yt = (1+
q

∑
i=1

θiLi)εt (3)

From this, we can proceed to ARIMA, which includes integration. Specifically,
it regards the order of integration: that is, the number of differences to be taken for
a series to be rendered stationary. Integration I(d) takes parameter d, the unit root
multiplicity. Hence, ARIMA is formulated as follows:

(1−
p−d

∑
i=1

αiLi)(1−L)dYt = (1+
q

∑
i=1

θiLi)εt (4)

1.1.3 Forecasting Evaluation Metrics

We often perform the above modeling so that we can forecast time series into the
future. But, how do we compare whether a model is better or worse at forecasting?
We first designate a set of training data, and then evaluate predictions on a separately
held-out set of test data. Then, we compare our predictions to the test data and
calculate an evaluation metric.

4 Allison Koenecke

Hold-out sets It is important to perform cross-validation properly such that the
model only sees training data up to a certain point in time, and does not get to
“cheat” by looking into the future; this mistake is referred to as “data leakage.”
Because we may only have a single time series to work with, and our predictions
are temporal, we cannot simply arbitrarily split some share of the data into a training
set, and another share into validation and test sets. Instead, we use a walk-forward
split [7] wherein validation sets are a certain number of timesteps forward in time
from the training sets. If we train a model on the time series from time t0 to ti,
then we make predictions for times ti+1 through ti+k (where k = 1 in Figure 1, and
prediction on ti+4 only is shown in Figure 2) for some chosen k. We calculate an
error on the predictions, and then enlarge the training set and iteratively calculate
another error, and so on, continuously walking forward in time until the end of
the available data. In general, this idea is called the “rolling window process,” and
allows us to do multiple-fold validation. The question that remains now is how to
calculate prediction error.

Fig. 1 Cross validation with 1-step-ahead fore-
casts; training data are in blue, and test data
are in red. Specifically, forecasts are only made
one timestep further than the end of the training
data [8]

Fig. 2 Cross validation with 4-step-ahead fore-
casts. Forecasting can be done for any specific
timestep ahead, or range of timesteps, so long
as the training and test split are preserved as
such [8]

Evaluation metrics We can use several different evaluation metrics to calculate
error on each of the validation folds formed as described above. Let yi be the actual
test value, and ŷi be the prediction for the ith fold over n folds. The below common
metrics can be aggregated across folds to yield one final metric:

1. Mean Absolute Error: ∑
n
i=1
|yi−ŷi|

n

2. Mean Absolute Percentage Error: 1
n ∑

n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣
3. Mean Squared Error: 1

n ∑
n
i=1 (yi− ŷi)

2

4. R squared: 1− ∑
n
i=1 (yi−ŷi)

2

∑
n
i=1 (yi− 1

n ∑
n
i=1 yi)

2

Applying Deep Neural Networks to Financial Time Series Forecasting 5

1.2 Common Pitfalls

While there are many ways for time series analyses to go wrong, there are four com-
mon pitfalls that should be considered: using parametric models on non-stationary
data, data leakage, overfitting, and lack of data overall. These pitfalls extend to the
data cleaning steps that will be used with neural networks, which are described in
Section 2. Below we recap what can be done to ameliorate these issues.

Non-stationary data Ensure that data is transformed prior to modeling. We sug-
gest several methods in Section 1.1, such as order differences, seasonality removal,
and logarithmic transformations. Further to this, trends can also be removed (e.g., by
subtracting the overall mean of a time series), smoothing can be done by replacing
the time series with a moving average, and other transformations may be useful as
well (e.g., standardization or Box-Cox). In general, it is also good practice to clean
data by removing outliers.

Data leakage Confirm that cross-validation is done correctly, so that the model
does not see any future data relative to the timestep it is predicting. In particular, if
de-meaning the data to make it stationary, ensure that means are calculated only over
each training data batch, rather than across the entire duration of the time series.

Overfitting Certain training data points may predict overly well, so the model may
overfit to those rather than generalizing, resulting in lower accuracy in the test set.
For regression-based analyses, regularizers (such as Lasso and Ridge) or feature
selection can help. When running ARIMA, check the Akaike information criterion
(AIC) to determine which parameters are optimal to avoid overfitting.

Lack of data This goes hand in hand with overfitting, as too few data for the num-
ber of parameters poses a similar concern to having too many parameters for the
number of observations. On the data side, one can use rolling windows to allow for
more training data, since shorter lengths of time series are incorporated. Keep in
mind that if the time series is too short, STL often cannot be trained. If multiple
time series exist, a subset of which have some historical data missing that cannot
be imputed, transfer learning can help. If the time series express roughly similar
temporal trajectories, try only training on the time series with full historical data.

2 Introduction to Deep Learning

Deep learning has become popularized in many aspects of data science. Why would
we want to use deep learning rather than traditional time series methods? Traditional
models struggle with high-dimensional multivariate problems, non-linear relation-
ships, and incomplete datasets. These traits commonly occur in real-world data, and
are much more easily resolved by using deep neural networks. That said, a draw-
back is that neural networks are designed as black boxes which can be difficult for
statistical interpretability.

6 Allison Koenecke

2.1 Deep Learning Basics

Deep Learning Algorithms use neural networks, which associate inputs and out-
puts using intermediate layers to model non-linear relationships. Each unit in a layer
uses a particular representation of the data; for time series data, for example, the in-
put layer may correspond to a vector of numerical values, or a matrix containing
auxiliary data. For categorical data, a “one-hot encoding” can be used as input to
a neural network; it creates a binary vector with size equal to the number of cate-
gories, where all vector values are 0 barring the vector position corresponding to the
category, which takes on a value of 1.

A canonical example using neural networks involves predicting the price of a
house: Layer 1 (the input layer) contains attributes such as the size, number of
bedrooms, zip code, etc. Layer 2 (assuming only one hidden layer) intuits some
attributes from the input layer that are not explicitly hard-coded; e.g., size and num-
ber of bedrooms indicate a “family size” metric, and zip code indicates “school
quality.” Finally, in Layer 3 (the output layer), we aggregate the hidden layers and
the model returns the price of the home.

Fig. 3 A basic neural network with three layers [9]

Given a certain neural network architecture, we want to find the correct weights
that connect the different neurons (also referred to as nodes, cells, or units), where
the neurons are depicted as circles in Figure 3. There are many ways to train a
neural network, such as backpropagation, genetic algorithms, or random search;
all of these aim to find optimal hyperparameters for the neural network. Note that
statistical properties can be well-defined using “traditional” econometric time series
methods, and also for shallow networks (having a single hidden layer); however, the
statistical aspects become more complicated for deep neural nets.

Backpropagation is a key component in a basic but powerful neural net training
method. On a batch of training data, after randomly initializing weight matrices:

Applying Deep Neural Networks to Financial Time Series Forecasting 7

1. Calculate loss using feed-forward propagation;
2. Generate loss gradients using backpropagation;
3. Update neural network weights using gradient descent.

We will describe loss in greater detail below; for now, it can be thought of as how
incorrect a model’s prediction is; a perfect model has a loss of zero, more prediction
errors mean a greater loss. Machine learning methods generally aim to minimize the
loss function.

For layer number i and unit j (within each layer), the standard notation used for
generating weightings in neural networks is as follows. Let z be the output, w be the
weight, and b be the bias. Here, we define the raw output function of each unit:

z[i]j = w[i]T
j x+b[i]j (5)

The forward propagation process goes from left to right of the neural network as
drawn in Figure 3. The raw output value is computed for each unit per the above
equation, interpreted as the weighted sum of values feeding into the unit. Then, an
activation function is usually applied to non-linearly transform the raw output value
(in all layers except the input layer); this can be thought of as thresholding the unit,
such that the transformation of z[i]j values are “activated” at a certain level. Common

activation functions include the sigmoid (g(z) = 1
1+e−z), tanh (g(z) = ez−e−z

ez+e−z), and

ReLU (g(z) = max(0,z)). Let us define activation a[i]j = g
(
z[i]j

)
.

After one full pass through forward propagation, we have our activation a which
functions as our predicted output ŷ, as compared to our final output ht(x) at time
iteration t, which functions as our general output y. From this, we calculate a single
scalar value: loss. There are many different loss functions to choose from; for re-
gression problems, mean squared loss is commonly used. The Mean Squared Error
(MSE) loss function is defined on N samples as L(y, ŷ) = 1

N ∑
N
i=1

(
yi− ŷi

)2. We aim
to minimize this loss using gradient descent.

Next, in the backpropagation step, gradients are calculated backwards, on layers
from right to left per Figure 3. For intuition, we work backwards so that we can take
our previous loss calculation, and determine which mis-steps throughout the neural
network led to the lower accuracy that we found in the loss. Each derivative with
respect to weight w is calculated using the chain rule as follows:

∂L(w)
∂w

=
∂L(w)

∂a
× ∂a

∂ z
× ∂ z

∂w
(6)

Finally, the neural network weights w are updated using gradient descent, defined
for learning rate α by:

w←− w−α
∂L(w)

∂w
(7)

We repeat and update weights until convergence. There are myriad ways to im-
prove from this basic outline. For example, the dropout technique can be used, which
ameliorates overfitting data by dropping units with a pre-defined probability. The

8 Allison Koenecke

learning rate α can be fixed or iteratively changed by methods such as Adam, Ada-
grad, momentum, etc. Instead of random initialization of weights, Xavier [10] or He
[11] initialization can be used. Additionally, L2 regularization can be used in the
gradient descent update step for w [12].

Various types of neural network architectures exist for different tasks. We dis-
cuss two major categories: Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs).

Convolutional Neural Networks are primarily used in computer vision, where
inputs are often matrices with entries corresponding to pixel values. They are com-
monly used due to relatively easy feature engineering, which do not need to learn
directly from, e.g., lagged time series observations. CNNs are good at learning rep-
resentations of large inputs. As shown in Figure 4, CNNs have four types of layers,
from left to right: the input layer, convolutions of the input (CONV), pooling of the
convolutions (POOL), and finally a fully connected (FC) layer [13].

Fig. 4 An example of a CNN to perform classification (among Nx classes) on a 2-D image [13]

The CONV layer performs the convolution operator as the input is taken in, and
outputs a “feature map.” For input volume W , filter size F (yielding a F×F square
receptive field within which the convolution is taken), zero padding P (number of
zeroes added surrounding input boundaries so that edge data are seen by filters), and
stride S (number of pixels that the filter moves after each operation), the convolu-
tional layer must have N units, as specified below:

N =
W −F +2P

S
+1 (8)

The POOL layer downsamples the layer that is fed into it. This can be done
with, e.g., max pooling (taking the maximum value over a filter) or average pooling
(taking the average value over a filter). Lastly, the FC layer takes as input a flattened
layer wherein all units are mutually connected.

Recurrent Neural Networks are primarily used in natural language processing,
with the canonical example being translation. They share many positive aspects
with CNNs when dealing with sequences, with the additional bonus of applying
a recurrence at each time step when processing sequences. This recurrence is shown

Applying Deep Neural Networks to Financial Time Series Forecasting 9

in Figure 5. Further, model size does not increase with the size of the input (which
can be any length). RNNs allow layers to have hidden states when being input to the
next layer, so that historical values can play a role in prediction (though accessing
very early data in, e.g., an input sequence is relatively difficult).

Fig. 5 An unrolled RNN, showing recurrence occurring at each timestep [14]

2.2 Deep Learning for Time Series

Sequence-to-sequence modeling for time series has been fairly popular for the past
several years, not just in industry, but also broadly from classrooms [15] to Kaggle
[16]. These methods range from vanilla models to advanced industry competitors.
Sequence-to-sequence models specifically refer to neural networks where the input
is a sequence (e.g., a time series), and the output is similarly a sequence. In or-
der to allow for sequence manipulation, the model needs to keep track of historical
dependencies of the sequence, remember time index ordering, and allow for param-
eter tuning over the time duration of the sequence. We introduce some examples of
specific sequence-to-sequence models below.

Dilated Convolutional Neural Networks (DCNN) are a specific kind of CNN that
allow for a longer reach back to historical information by connecting an exponential
number of input values to the output (using dilated convolutional layers of varied
dimensions), as shown in Figure 6 [17]. This allows for better performance on long
time series with strong historical dependencies.

Fig. 6 A three-layer DCNN [17]

10 Allison Koenecke

Fig. 7 Three LSTM modules, each with four layers [14]

Long Short-Term Memory (LSTM) is a type of RNN that similarly learns a map-
ping from input to output over time, but the mapping is no longer fixed as in the stan-
dard RNN. In backpropagation, one problem that arises is vanishing and exploding
gradients (which result in poor results stemming from divide-by-zero errors). To re-
solve this, LSTMs use “computational gates” to control information flow over time,
allowing them to forget less useful historical information. Hence, LSTMs do better
with long-term dependencies.

An LSTM gate takes as input the previous hidden state and current input [14],
and returns a new state. These gates are of the form Gt = g(WG · [ht−1,xt] + bG),
where activation function g will be either tanh or a sigmoid function σ . The input
gate decides which values to update, the forget gate decides which values to forget,
and the output gate decides which values to output [14].

First, the LSTM uses the forget gate ft by passing the previous hidden state and
current input through a sigmoid function, which tells the LSTM which information
to keep in the cell state Ct . Next, an input gate layer it (another sigmoid layer)
decides the values to be updated. The new values to be updated in the cell state are
found with a tanh layer Ct . Then, we update cell state so that Ct ←− ft ∗Ct−1 + it ∗Ct .
Finally, we filter outputs using the output gate ot (a sigmoid layer), and finally return
ht = ot ∗ tanh(Ct). These gates are portrayed in the middle module of Figure 7.

Note that LSTMs can be interpreted as a general form of another sub-type of
RNN, the Gated Recurrent Unit (GRU). The GRU only has an input gate and a reset
gate, the latter of which similarly selectively forgets historical information [14].

For sequence-to-sequence modelings, usually one RNN layer functions as an
“encoder” while another functions as a “decoder.” The “encoder” processes input
and creates an internal state; the internal state is then fed into the “decoder,” which
predicts the output sequence. In Figure 8, we see that LSTMs can function as en-
coders and decoders to translate linguistic sequences; character sequences can easily
be substituted for numerical values [18].

Applying Deep Neural Networks to Financial Time Series Forecasting 11

Fig. 8 This LSTM-based sequence-to-sequence architecture will eventually translate “The weather
is nice” in English to “Il fait beau” in French; with inference, the process is repeated until a [STOP]
character is generated [18]

3 Case Study: Microsoft Revenue Forecasting

We now introduce a real-life case study, excerpted from research conducted at Mi-
crosoft [19]. The specific approaches were developed to forecast Microsoft revenue
data corresponding to Enterprise, and Small, Medium & Corporate (SMC) prod-
ucts, spanning approximately 60 regions across the globe for 8 different business
segments, and totaling tens of billions of USD. In particular, this time series fore-
casting is done by borrowing deep learning techniques from Natural Language Pro-
cessing (Encoder-Decoder LSTMs) and Computer Vision (Dilated CNNs). For both
techniques, a curriculum learning training regime was introduced, which trains on
increasingly difficult-to-forecast trend lines. The resulting forecasts yield a 30%
improvement in overall accuracy on test data relative to Microsoft’s former baseline
forecasting model using traditional techniques.

3.1 Background

This case study is differentiated from prior work in two major ways: firstly, by using
curriculum learning (defined below), and secondly, by using both Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs) on medium-sized
data—that is, data in the thousands of rows with limited historical data—without
overfitting.

Curriculum learning is a technique that changes the order of inputs to a model to
improve results. The intuition from Natural Language Processing (NLP) regarding
this method is that shorter sentences are easier to learn than longer sentences; so,
without initialization, one can bootstrap via iterated learning in order of increasing
sentence length. The relevant literature, including specifically the described Baby
Steps algorithm [20, 21], has been applied to LSTMs for parsing a Wall Street Jour-
nal corpus [21], n-gram language modeling [22], and for performing digit sums
using LSTMs [23]. However, there has been no application of this work to real nu-
merical time series data.

12 Allison Koenecke

It is fairly straightforward to use neural networks on large datasets, but more dif-
ficult to apply these techniques to smaller-sized data due to the risk of overfitting.
Many companies have adopted the use of LSTMs for time series modeling; an ad-
vanced public methodology comes from Uber, which won the 2018 M4 Forecasting
Competition using a hybrid Exponential Smoothing and RNN model [24]. Another
proven neural network method for financial forecasting is the Dilated CNN [17],
wherein the underlying architecture comes from DeepMind’s WaveNet project [25].
Both instances use similar methods to this case study, but the Microsoft revenue data
is an order of magnitude smaller, and has more rigid hierarchical elements.

3.2 Data

3.2.1 Data Structure

World-wide revenues for Enterprise and SMC groups are partitioned into 8 busi-
ness segments; each segment is partitioned into approximately 60 regions, and each
region’s revenue is partitioned further into 20 different products. Overall, there are
approximately 6,000 datarows (since not all products are sold in all regions), with
each datarow corresponding to a time series used for our forecasting problem. Given
historical quarterly revenue data, our goal is to forecast quarterly revenue for these
products per combination of product, segment, and region; we then generate the
aggregated segment-level forecasts as well as world-wide aggregates. Note that we
focus on segment-level (rather than subregion or product-level) forecasts for com-
parison’s sake, since this level has historically been used by the business. All rev-
enue numbers are adjusted to be in USD currency using a constant exchange rate.
Sample datarow structure is presented in Figure 9.

Fig. 9 Sample datarow structure excluding financial values

We use the quarterly revenue available (post-data-processing) for each datarow
over fiscal quarters from January 2009 through July 2018 (totaling 39 timesteps).
Broadly speaking, we train on the first 35 timesteps of all datarows, and test on
the final 4 timesteps. For all DNN models, we train specifically on a subset of the
datarows which has good enough history to fit a reasonable model (approximately
84% of all datarows). Post-training, we apply this model to forecast revenue both for

Applying Deep Neural Networks to Financial Time Series Forecasting 13

datarows on which it was trained, and also on out-of-sample datarows that were not
seen by the model at the time of training due to insufficient historical information.

3.2.2 Microsoft Baseline

Circa 2015, most of the revenue forecasting in Microsoft’s Finance division was
driven by human judgement. In order to explore more efficient, accurate and unbi-
ased revenue forecasting, machine learning methodology was explored along with
statistical time series models [7]. The methodology described in [7]—which roughly
ensembles ARIMA, ETS, STL, Random Forest, and ElasticNet models—was used
to compute forecasts in 13 worldwide regions. In [26], this approach was further
extended to use product level data available within each region, and to generate
forecasts for each product within region (allowing for aggregation to region-level
and world-wide forecasts). This is the approach that is currently adopted by Mi-
crosoft’s Finance team; models based on this approach are running in a production
environment to generate quarterly revenue forecasts to be used by Finance team
members. The results obtained from this method are referred to as the Microsoft
baseline, and this case study explores whether the proposed DNN-based models can
outperform the current baseline model in production. Because the ensuing revenue
predictions are sensitive, we cannot report these numbers directly, but rather report
them in terms of improvement over the Microsoft baseline.

3.3 Methods

This work on time series is mostly inspired by non-financial applications. Specifi-
cally, Encoder-Decoder LSTMs (Section 3.3.1) are used in NLP, and Dilated CNNs
(Section 3.3.2) are applied in Computer Vision and Speech Recognition.

3.3.1 RNN Model: Encoder-Decoder LSTM

We present four variants, each cumulatively building upon the previous variant, of
our RNN model to show increasing reduction in error. In all variants, we use a
walk-forward split [7] wherein validation sets are four steps forward into time from
training sets, ensuring no data leakage. We do this iteratively for windows of size
15 timesteps within the data, continuously walking forward in time until the end
of the training data (i.e., until July 2017); this is referred to as the rolling window
process as described in Section 1.2. The window size of 15 timesteps was chosen
empirically through experiments not described here. As we move from one window
to the next, we use weights obtained from the model trained on data corresponding
to the previous window for initialization. An example loss function when using the
rolling window process is shown in Figure 10; notice that gradual loss is attained

14 Allison Koenecke

as we step through consecutive windows because the model uses prior weights to
warm-start rather than fitting from scratch.

Fig. 10 Example Mean Absolute Error loss for
rolling window method on LSTM

Fig. 11 Seasonal decomposition example on
one financial datarow

Basic LSTM The first model we discuss is our basic RNN model. All training,
validation, and test data are historical financial values that have been smoothed us-
ing a logarithmic transformation and de-meaned on training data only. These pre-
processing methods are used throughout due to better experimental results relative to
other smoothing transformations. A single-layer sequence-to-sequence model is fed
into a dense layer, using the Adam optimizer on mean absolute error. The sequence-
to-sequence [27] architecture involves a LSTM encoder (to process revenue and
return internal state), and an LSTM decoder (to use the previous time step’s actual
data and internal LSTM encoder states to generate the next output). Teacher forcing
is used only during training; for inference, we feed in the predicted values for the
next timestep as input to the decoder instead of the actual value as would be the
case in the teacher forcing method. Next, we apply the inverse smoothing transfor-
mation on the decoder’s output for last four timesteps (i.e., revenue for the last four
quarters) to calculate test error.

LSTM with Categorical Indicators The second model we examine is simply the
basic model with additional indicator covariates (i.e., one-hot categorical variables
are incorporated in the model). Specifically, for our three categorical variables (seg-
ment, region, and product), we include one-hot encodings so that the hierarchical
product information is reflected in the model.

LSTM with Seasonality The third model incorporates seasonal effects in the sec-
ond model. Specifically, we use multiplicative Seasonal Trend decomposition using
Loess (STL) [2] to calculate trend, seasonal, and residual components. A sample
datarow decomposition is shown in Figure 11. We extract the seasonal component
from the relevant datarows, and we use only the product of trend and residual ef-
fects (in each quarter, and for each datarow) as inputs to be smoothed and fed to the
neural network model. De-seasonalizing the input data along with the other trans-
formations (logarithmic and de-meaning) helps to make the data more stationary.

Applying Deep Neural Networks to Financial Time Series Forecasting 15

We maintain use of the indicator covariates introduced in the second model. The
only difference now is in the inference step: in addition to decoding and using an
inverse smoothing transformation, we must also multiply our predictions obtained
from the decoder by the seasonal values calculated for each quarter (timestep) in the
previous year.

LSTM with Curriculum Learning The fourth model applies curriculum learning
to the third model. We use the pre-calculated seasonal decomposition to determine
a useful batch ordering method to feed into our neural net, and then apply the Baby
Steps curriculum algorithm [23, 21] defined in Figure 12.

Fig. 12 Baby Steps Curriculum Learning Al-
gorithm [23, 21]

Fig. 13 Example Mean Absolute Error loss
for curriculum learning with rolling window
method on LSTM (ordered from easiest to
hardest estimated prediction)

Let us define D′ = sort(D,C) for training data D and curriculum sort metric C
[23], where our sort metric is specified as the residual trend weighted by segment
revenue for each datarow. That is, we will sort our training data on this new vari-
able we have created, which exists for each datarow. Then, we order our batches
such that {D1,D2, ...,Dk} = D′ where C(da) < C(db) for da ∈ Di,db ∈ D j,∀i < j.
In words, we train in increasing order of the residual error calculated from the STL
decomposition mentioned previously. Once the k batches are defined, we shuffle the
datarows within the batch during training. Within each iteration of the rolling win-
dow process, we continue the warm-start process by iteratively adding one batch at
a time to the training data, running each rolling window iteration p times, where p
is the number of epochs chosen such that convergence can be reached. In summary,
for each of the s = 1, ...,k batches, we run Dtrain = Dtrain ∪Ds until the end of p
epochs of each rolling window iteration. A sample loss function including curricu-
lum learning is shown in Figure 13, where we have experimentally chosen p = 75.

We note that there are several ways to form the batching described above. In our
results, we present batches formed directly from the datarow sort metric calculated
as described above, i.e., the datarow-level residual error (using 5 batches, as deter-
mined experimentally). However, we have also found good results when batching by
segment (with each batch corresponding to one Microsoft segment), where batches

16 Allison Koenecke

are sorted by revenue-weighted segment-level residual error. In all cases, we shuffle
datarows within each batch when training. The idea of curriculum learning is to train
on easier examples to learn harder ones. As such, we find that running curriculum
learning with batches sorted in order of best-fit to least-fit segments yields similar
results to those that we find from the datarow-level (uniform-weighting) method we
use in this paper. However, we also experimented with curriculum learning using
batches sorted in reverse order: least-fit to best-fit segments. This resulted in far bet-
ter accuracies for certain (smaller-revenue) segments, but worse accuracies for all
other segments. Hence, it remains a reasonable option to sort in various ways, and
then ensemble results, to tease out best results for different segments.

3.3.2 CNN Model: Dilated CNN

We present three versions of our CNN model to show increased reduction in error
across iterations. We note that we do not explore separating seasonal effects from
our DCNN model as a pre-processing step. While found to be useful in the LSTM
model, results are not significantly better for the DCNN when performing seasonal
decomposition prior to training the model. This is likely because the exponential
nature of the DCNN layers allows us to capture the seasonality over a long time
series, since we are using each relevant datarow’s full 35-quarter financial history as
input to the model (rather than the rolling window method applied for LSTMs).

Basic Dilated CNN In our first Dilated CNN model, we use 1D convolutions in
each of 10 dilated convolutional layers (with 6 filters of width 2 per layer). This
connects to an exponential number (210) of input values for the output. Two fully
connected layers are used to obtain a final output: a dense layer of size 128 with
ReLU activation, and a dense layer of size 1. We apply an Adam optimizer on the
Mean Absolute Error. Teacher forcing is done during training only, and predicts
the four test quarters of data iteratively, appending each prediction to history for
the next timestep’s prediction. Similar to the LSTM model, all historical financial
values passed into the DCNN model have been smoothed using a logarithmic trans-
formation and de-meaned on training data only.

Dilated CNN with Categorical Indicators The second DCNN model we examine
is simply the above basic model with additional indicator covariates. Specifically,
for our three categorical variables (segment, region, and product), we include one-
hot encodings so that the hierarchical product information is reflected in the model.

Dilated CNN with Curriculum Learning We apply the same mechanism for cur-
riculum learning as explained for the LSTM model, using the residual from seasonal
decompositions as a proxy for the difficulty of forecasting each datarow. We batch
by the datarow-level residual error (using 8 batches, as determined experimentally).
The curriculum learning is performed based on the second DCNN model, i.e., in-
cluding categorical variables, but not using seasonal decomposition for anything
aside from the sort order for curriculum learning.

Applying Deep Neural Networks to Financial Time Series Forecasting 17

3.3.3 Evaluation

For evaluation purposes, we use the four quarters of data from October 2017 to July
2018 as our test dataset. For certain products, there are only null values available in
recent quarters (e.g., if the product is being discontinued) and hence we do not in-
clude these products in the test dataset. We use the Mean Absolute Percentage Error
(MAPE) as our error evaluation metric. To take into account the inherent random-
ness involved from weight initialization when training the DNNs, and considering
that our data is medium-sized, we run each experiment 30 times to obtain a more
robust estimate of the errors. For each datarow, we take the average of the forecasts
across runs and across quarters as the final forecast and compare this predicted rev-
enue to the actual observed revenue. The segment-level forecast is the sum of all
(subregion-level and product-level) forecasts falling into that segment. The world-
wide forecast is the sum of forecasts for all datarows. Due to privacy concerns, ac-
tual test errors are not displayed. We instead report relative percentage improvement
over the Microsoft baseline in production.

3.4 Results

We find that both LSTM and DCNN models with curriculum learning out-perform
the respective models without curricum learning. In particular, the Encoder-Decoder
LSTM with curriculum learning (including categorical indicators and seasonality ef-
fects) yields the lowest error rates, showing a world-wide improvement of 27%, and
a revenue-weighted segment-based improvement of 30%, over Microsoft’s produc-
tion baseline. We further find that curriculum learning models can yield either lower
bias or variance for various segments.

3.4.1 World-wide Error Rates

World-wide MAPEs for all models are compared in Table 1. Both LSTM and DCNN
models with curriculum learning outperform all variants without curriculum learn-
ing by over 10 percentage points. It is worth noting that even the baseline LSTM
model (without curriculum learning) improves upon the Microsoft baseline in pro-
duction. It is worth commenting on the decrease in world-wide accuracy upon
adding seasonality to the LSTM model. While the world-wide error (MAPE) is
higher for this model variant, we see in Table 2 that the revenue-weighted segment-
level average yields an improvement of 21% from seasonality over the previous
LSTM model variants. The interpretation here is that seasonality can be more accu-
rately inferred for the few product segments having the largest revenues, and hence
the segment-level benefits are outweighed world-wide by the many smaller-revenue
datarows that are less accurate (due to more fluctuation in seasonal effects on smaller
products). We suggest that seasonal trend decomposition be used only after careful

18 Allison Koenecke

consideration of the durability of financial seasonality. In our application, we only
present LSTM results including seasonality since we find it beneficial conjointly
with curriculum learning; experimentally, our displayed results fare better than the
alternative of curriculum learning sans seasonality.

Table 1 World-wide test error reduction percentages of DNN models over previous Microsoft
production baseline.

Model Percent MAPE Improvement
Basic LSTM 1.9%
LSTM with Categorical Indicators 18.2%
LSTM with Seasonality -5.1%
LSTM with Curriculum Learning 27.0%
Basic DCNN -0.7%
DCNN with Categorical Indicators 12.1%
DCNN with Curriculum Learning 22.6%

Recall that we ran each model 30 times and took outcome averages to reduce
variance. Density plots are shown for world-wide results in Figures 14 and 15, which
reflect the distribution of calculated (non-absolute) percentage error for each of the
LSTM and DCNN models tested, respectively. These figures allow us to examine the
extent to which curriculum learning models are less biased: we see that the curricu-
lum learning variant (red curve for LSTM, and green curve for DCNN, respectively)
is both closest to zero-centered and is one of the models with lowest variance. 1

Table 2 LSTM Model Segment-level MAPE reduction percentages (%) over previous Microsoft
production baseline (positive % corresponds to error reduction).

Segment Basic Model (a) + Model(b) + Model(c) +
LSTM Categorical Indicators Seasonality Curriculum Learning
(Model (a)) (Model (b)) (Model (c)) (Model(d))

1 25.5 22.0 53.4 70.0
2 -47.9 -34.3 -23.0 -0.8
3 7.65 -5.8 26.0 20.3
4 14.2 30.3 12.0 27.4
5 -15.4 -13.2 -11.8 -25.9
6 -79.2 -60.3 -110.1 -12.4
7 34.7 30.1 31.0 11.5
8 17.9 15.5 57.2 61.4
Revenue-
weighted
Average

10.3 10.3 21.3 30.0

1 For both density plots, the y-axis denoting density is fully presented. However, note that the x-
axis (expressing percent error) values aside from 0 are excluded for Microsoft privacy reasons. For
both LSTM and DCNN models, we can disclose that the spread of error is bounded by a range of
approximately ±10 percentage points.

Applying Deep Neural Networks to Financial Time Series Forecasting 19

Fig. 14 LSTM World-wide Error Density Fig. 15 DCNN World-wide Error Density

3.4.2 Segment-Level MAPEs

In Tables 2 and 3, we share the segment-level incremental improvement percent-
ages obtained from the Encoder-Decoder LSTM and DCNN model MAPEs, respec-
tively, as compared to Microsoft’s previously-implemented baseline. Due to privacy
concerns, the actual names of the segments are not shared since their revenues are
considered High Business Impact (HBI) data. Overall, the revenue-weighted LSTM
segment-level MAPEs show a drastic 30% improvement in MAPE relative to the
Microsoft baseline currently used in production (see Table 2); curriculum learning
yields a 19% improvement in MAPE using the DCNN model (see Table 3).

While we cannot discuss segment-specific results in terms of absolute numbers,
we comment that it is clear that some segments see significant gains relative to
the Microsoft production baseline, whereas others only see modest gains (or slight
decreases). In particular, the addition of curriculum learning with our uniformly-
weighted ordering improves results for larger-revenue segments. However, when us-
ing batches based on segment, and using a reverse ordering of segments from hardest
to easiest to predict (based on seasonality as we have been doing; results for this vari-
ant are not disclosed in this paper), the most improvement is seen in smaller-revenue
segments, which otherwise would have been overshadowed by model weights con-
tributing towards larger-revenue segments. Thus, ensembling these two different
sorts is a promising future step.

Segment-specific density plots, which can be found in [19], yield similar findings
to the world-wide density plots. When looking at both segments with smaller and
larger revenue (the latter more than four times the size of the smaller segment), we
see that curriculum learning lessens bias and/or across-run variance. Specifically,
for the segments wherein curriculum learning improves accuracy, some will see
lessened bias (with little change in variance from non-curriculum learning model
variants), some will see lessened variance (with little change in bias from non-
curriculum learning model variants), and some instances yield better bias and vari-
ance. Hence, we conclude that curriculum learning models on our financial time
series for specific segments not only yield more accurate forecasts, but also can
achieve relatively low variance and bias.

20 Allison Koenecke

Table 3 DCNN Model Segment-level MAPE reduction percentages (%) over previous Microsoft
production baseline (positive % corresponds to error reduction).

Segment Basic Model (a) + Model(b) +
DCNN Categorical Indicators Curriculum Learning
(Model (a)) (Model (b)) (Model (c))

1 24.8 44.0 34.2
2 -0.2 -19.5 -19.5
3 -8.7 28.9 39.9
4 35.5 35.4 22.6
5 45.4 58.4 26.8
6 -258.2 -263.2 -80.5
7 27.0 28.7 29.4
8 33.8 35.5 24.9
Revenue-
weighted
Average

-3.1 4.5 16.2

3.5 Discussion

It is clear from these results that there is value in using DNNs on Microsoft’s fi-
nancial time series, and further that curriculum learning is an indispensable tool
to improve accuracy of forecasts—not just within NLP settings. These curriculum
learning results are robust both world-wide and at the segment-level. Further, we
see from Figures 14 and 15 that curriculum learning allows for less bias in errors
(robust across both LSTM and DCNN methods), and in certain instances less vari-
ance in error at the segment level. Further, we assert that the financial data used in
our models need not be extraordinarily large to successfully use neural networks
for forecasting. DNN methods are far more efficient than the Microsoft production
baseline that involves ensembling traditional statistical and machine learning meth-
ods; it takes a fraction of the time spent to run each DNN model. While curriculum
learning involves sorting, and hence may be unwieldy for very large datasets, it does
not significantly impact runtime on the “medium-sized” Microsoft data, and we are
able to create models that do not overfit the data.

There has been much work expanding upon the neural networks seen here, from
meta-learning across time series [28] to robustness of out-of-sample prediction test-
ing at different timesteps [29], with many other methods that are beyond the scope
of this chapter [30]. We hope to see greater use of deep neural networks as applied
to financial time series forecasting.

Acknowledgements We are grateful to Amita Gajewar for her support in co-authoring the re-
search conducted at Microsoft. We acknowledge Kuba Karpierz for insightful conversations and
copy-editing. The work of A.K. is jointly supported by Microsoft and the National Science Foun-
dation Graduate Research Fellowship under Grant No. DGE – 1656518. Any opinion, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

Applying Deep Neural Networks to Financial Time Series Forecasting 21

References

1. D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time series
with a unit root,” Journal of the American Statistical Association, vol. 74, no. 366, p. 427,
Jun. 1979. [Online]. Available: https://doi.org/10.2307/2286348

2. R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl: A seasonal-trend de-
composition procedure based on loess (with discussion),” Journal of Official Statistics, vol. 6,
pp. 3–73, 1990.

3. V. Gómez and A. Maravall Herrero, Programs TRAMO and SEATS: instructions for the user
(beta version: September 1996). Banco de España. Servicio de Estudios, 1995.

4. E. B. Dagum, “The x-11-arima seasonal adjustment method, statistics canada,” 1980.
5. R. J. Hodrick and E. C. Prescott, “Postwar u.s. business cycles: An empirical investigation,”

Journal of Money, Credit and Banking, vol. 29, no. 1, p. 1, Feb. 1997. [Online]. Available:
https://doi.org/10.2307/2953682

6. G. Box, Time series analysis : forecasting and control. Hoboken, N.J: John Wiley, 2008.
7. K. G. G. B. M. C. Jocelyn Barker, Amita Gajewar, “Secure and automated enterprise rev-

enue forecasting,” in The Thirtieth AAAI Conference on Innovative Applications of Artificial
Intelligence, 2018, pp. 7567–7664.

8. R. Hyndman, “Cross-validation for time series,” Dec 2016. [Online]. Available: https:
//robjhyndman.com/hyndsight/tscv/

9. A. Ng, “Neural network.” [Online]. Available: https://slideplayer.com/slide/12620833/76/
images/9/Neural+Network+12+Slide+by+Andrew+Ng.jpg

10. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh and
M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010,
pp. 249–256. [Online]. Available: http://proceedings.mlr.press/v9/glorot10a.html

11. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification,” in 2015 IEEE International
Conference on Computer Vision (ICCV). IEEE, Dec. 2015. [Online]. Available:
https://doi.org/10.1109/iccv.2015.123

12. A. Ng, “Deep learning.” [Online]. Available: https://cs229.stanford.edu/notes2019fall/
cs229-notes-deep learning.pdf

13. A. Deshpande, “A beginner’s guide to understanding convolutional neu-
ral networks.” [Online]. Available: https://adeshpande3.github.io/A-Beginner’
s-Guide-To-Understanding-Convolutional-Neural-Networks/

14. C. Olah, “Understanding lstm networks.” [Online]. Available: https://colah.github.io/posts/
2015-08-Understanding-LSTMs/

15. J. Brownlee, “Time series prediction with lstm recurrent neural networks in
python with keras,” Aug 2019. [Online]. Available: https://machinelearningmastery.
com/time-series-prediction-lstm-recurrent-neural-networks-python-keras

16. J. Eddy, “Timeseries seq2seq.” [Online]. Available: https://github.com/JEddy92/TimeSeries
Seq2Seq

17. A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series forecasting with con-
volutional neural networks,” 2017.

18. F. Chollet, “The keras blog.” [Online]. Available: https://blog.keras.io/
a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

19. A. Koenecke and A. Gajewar, “Curriculum learning in deep neural networks for financial
forecasting,” in Mining Data for Financial Applications. Springer International Publishing,
2020, pp. 16–31. [Online]. Available: https://doi.org/10.1007/978-3-030-37720-5 2

20. Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings
of the 26th Annual International Conference on Machine Learning - ICML 09. ACM Press,
2009. [Online]. Available: https://doi.org/10.1145/1553374.1553380

https://doi.org/10.2307/2286348
https://doi.org/10.2307/2953682
https://robjhyndman.com/hyndsight/tscv/
https://robjhyndman.com/hyndsight/tscv/
https://slideplayer.com/slide/12620833/76/images/9/Neural+Network+12+Slide+by+Andrew+Ng.jpg
https://slideplayer.com/slide/12620833/76/images/9/Neural+Network+12+Slide+by+Andrew+Ng.jpg
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/iccv.2015.123
https://cs229.stanford.edu/notes2019fall/cs229-notes-deep_learning.pdf
https://cs229.stanford.edu/notes2019fall/cs229-notes-deep_learning.pdf
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras
https://github.com/JEddy92/TimeSeries_Seq2Seq
https://github.com/JEddy92/TimeSeries_Seq2Seq
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://doi.org/10.1007/978-3-030-37720-5_2
https://doi.org/10.1145/1553374.1553380

22 Allison Koenecke

21. V. I. Spitkovsky, H. Alshawi, and D. Jurafsky, “From baby steps to leapfrog: How “less is
more” in unsupervised dependency parsing,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Computational Lin-
guistics, 2010, pp. 751–759.

22. A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu, “Automated
curriculum learning for neural networks,” in Proceedings of the 34th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, D. Precup and Y. W.
Teh, Eds., vol. 70. International Convention Centre, Sydney, Australia: PMLR, 06–11 Aug
2017, pp. 1311–1320. [Online]. Available: http://proceedings.mlr.press/v70/graves17a.html

23. V. Cirik, E. Hovy, and L.-P. Morency, “Visualizing and understanding curriculum learning for
long short-term memory networks,” 2016.

24. N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme event forecasting with
neural networks at uber,” in International Conference on Machine Learning, vol. 34, 2017,
pp. 1–5.

25. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” 2016.

26. A. Gajewar, “Improving regional revenue forecasts using product hierarchy,” in 39th Interna-
tional Symposium on Forecasting, 2018.

27. I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
in Advances in neural information processing systems, 2014, pp. 3104–3112.

28. T. S. Talagala, R. J. Hyndman, G. Athanasopoulos et al., “Meta-learning how to forecast time
series,” Monash Econometrics and Business Statistics Working Papers, vol. 6, p. 18, 2018.

29. J. Sirignano and R. Cont, “Universal features of price formation in financial markets: perspec-
tives from deep learning,” 2018.

30. O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecasting with
deep learning : A systematic literature review: 2005-2019,” 2019.

http://proceedings.mlr.press/v70/graves17a.html

	Applying Deep Neural Networks to Financial Time Series Forecasting
	Allison Koenecke
	Introduction to Time Series Analysis
	Common Methods for Modeling
	Common Pitfalls

	Introduction to Deep Learning
	Deep Learning Basics
	Deep Learning for Time Series

	Case Study: Microsoft Revenue Forecasting
	Background
	Data
	Methods
	Results
	Discussion

	References

