INFO/CS 4302
Web Information Systems

FT 2012
Week 7: RESTful Webservice APlIs

- Bernhard Haslhofer -

W The Twitter REST API | Twitt:

€ > C | https://dev.twitter.com/docs/api ﬂ’g\ ‘»

[] Annotatelt ™.q CALIXTO ON CHRO!

W Developers | Search Q' APl Health Blog

Home

The TWltte Jump to v

REST API version 1.1 REST API version 1

The most recent version of the Twitter REST API. Version 1 of the REST API is now deprecated and will cease
functioning in the coming months. Migrate to version 1.1 today.

APl v1.1 Resources »
Review the deprecated version 1 API »
Rate Limiting in APl v1.1 »

Authenticating »

Announcement »

W Follow @twitterapi APl Terms API Status Blog Discussions Documentation A Drupal community site supported by Acquia@?

00O

g mAPIs | LinkedIn Developer N« %

€« > C \ https://developer.linkedin.com/apis

W

[] Annotatelt ™. CALIXTO ON CHROI

=3

Linked[{]. Developers

Home = Why Develop With Us

API Overview

People

Share and Social Stream
Groups

Communications
Companies

Jobs

Case Studies = Documentation = Support Blog

People

v Bernhard Haslhofer

Leverage LinkedIn as an identity authority for application registration and signin with the benefits of

=3 JavaScipt

http://api.linkedin.com/vl/people/~:(first-name,last-name,headline,picture-url)

simplifying the need for users to enter additional data.

http://api.linkedin.com/vl/people/~/connections
http://api.linkedin.com/vl/people-search?keywords=Hacker

http://api.linkedin.com/vl/people-search: (people,facets)?facet=location,us:84

Choose implementation type REST | JavaScript

Share and Social Stream

Use the share API for seamless integrations for content creators to distribute content into the Linkedin

network updates stream. Allow users to consume insights and content from their professional network.

http://api.linkedin.com/vl/people/~/shares
http://api.linkedin.com/vl/people/~/network/updates
htto://abi.linkedin.com/vl/peonle/~/network/undates?scooe=self

REST

JavaScript

~
&3 69 69

-~ LZREST API reference - Dropb:

& = ‘ & https://www.dropbox.com/developers/reference/api ﬁk‘ ‘»

[Annotatelt ™.q CALIXTO ON CHRO!

88 Get free space! Bernhard Haslhofer ¥

% Drophox

4% API home

21 Devel bl
A" Developer blog Pl'is the underlying interface for all of our official Dropbox mobile apps and our SDKs. It's the most direct way

to access the API. This reference document is designed for those interested in developing for platforms not supported by
the SDKs or for those interested in exploring API features in detail.

¢ My apps

Q Getting started

Core concepts General notes
Setup
Authentication SSL only

Eiles and folders We require that all requests are done over SSL.

1=/ Reference App folder access type
Development kits The default root level access type, app folder (as described in core concepts), is referenced in APl URLs by its codename
REST AP sandbox. This is the only place where such a distinction is made.
Best practices UTF-8 encoding
Branding guide

Every string passed to and from the Dropbox APl needs to be UTF-8 encoded. For maximum compatibility, normalize to
Terms and conditions Unicode Normalization Form C(NFC) before UTF-8 encoding.

Version numbers

& Developer forum The current version of our APl is version 1. Most version 0 methods will work for the time being, but some of its methods

" Dropbox APl support risk being removed (most notably, the version 0 API methods /token and /account).

Date format

o All dates in the API are strings in the following format:
Authentication

/request_token "Sat, 21 Aug 2010 22:31:20 +0000"

/authorize
Iarrace tAlkan In code format, which can be used in all programming languages that support strftime or strptime:

Source: http://www.blogperfume.com/new-27-circular-social-media-icons-in-3-sizes/ 5

Plan for today...

Recap - Web Fundamentals

APls, Web Services

Group Brainstorming

RESTful APls — Architectural principles

Questions, Housekeeping, ...

RECAP - WEB FUNDAMENTALS

Web Fundamentals

Internet # World Wide Web

Web Fundamentals

* Key Architectural Components

— ldentification: ???
— Interaction: ??7?
— Standardized Document Formats: ???, ???, 2?77

Web Fundamentals

* Key Architectural Components

— |dentification: URI
— Interaction: HTTP

— Standardized Document Formats: HTML, XML,
JSON, etc.

10

Principle ‘Orthogonal Specifications’

C

@)

©

O x5
= >
= 0‘(0

c &

Q QO
ke «
= O

— ®)

oc \/\0

) ‘N\

e
4\

http/ Interaction

URIs / Resources

* URIs identify interesting things
— documents on the Web
— relevant aspects of a data set

e HTTP URIs name and address resources in
Web-based systems
— a URI names and identifies one resource

— a resource can have more than one name

* http://foo.com/software/latest
e http://foo.com/software/vl1.4

Resource Representation

* Aresource can have (
several representations Representation
ain Text
* Representations can be e
in any format
— HTML Repr(:ﬁ_el\;lltation
ext/html
— XML text
— JSON
http://example.com/someURlI
— Representation
JSON
text/json
Resource

Interacting with Resources

* We deal with resource representations
— not the resources themselves (pass by value)
— representations can be in any format (defined by media-type)

e Each resource implements a standard uniform interface (HTTP)
— a small set of verbs applied to a large set of nouns
— verbs are universal and not invented on a per-application basis

Resource Representations

©
(ot
e
Client A JSON ‘\C&«\ Server A
\\N
N L

H

(I

AT

Logical Physical
Resources Resources

Document/Data Formats

Display data

Transport and store data

15

APIS, WEB SERVICES

APls

What is an API?
and
Why do we need APIs?

(Web) APIs

* Application Programming Interface

* Specifies how software components
communicate with each other
— e.g., Java API, 3rd party library APIs
— usually come with documentation, howtos

* Web API: specify how applications
communicate with other over the Web (H
URI, XML, etc.)

Web Services

O O m
7N O ¢
M O O Web

Application A Application B

amazoncom
* Example operations:

— Publish image on Flickr

— Order a book at Amazon

— Post a message on your friend’s Facebook wall
— Update user photo on foursquare

19

Web Services

“Web Services” £ “Web APIs”

Build on the design principles and architectural
components of the Web

Provide certain operations

Exchange structured data in standard formats
(JSON, XML, etc)

GROUP BRAINSTORMING

Instructions

 Form groups of 5
* 10 min:

— discuss known or possible Web API operations
(functions)

— collect operations in the form:
e [verb][noun] at [service]

— one person per group should write them down at:
http://bit.ly/info4302-api-brainstorming

22

RESTFUL APIS — ARCHITECTURAL
PRINCIPLES

Web Services for the Real World

Web API Design

Crafting Interfaces that Developers Love

RESTFul

Web Services

= : Brian Mulloy
(] .
0 R.E".LY Leonard Richardson & Sam Ruby
",":} Design Principles, Patterns
€« C M ® dret.net/netdret/docs/rest-icwe2010/ DA §

Design Principles, Patterns and Emerging Technologies for RESTful
Web Services

Cesare Pautasso and Erik Wilde

Tutorial at ICWE 2010 (Vienna, Austria)

July 6, 2010

The primary goal of this tutorial to close the gap between the high-level concept of Service-Oriented Architecture (SOA), and the question
of how to implement such an architecture once services have been identified. Colloquially, it is often assumed that "services" in a Web-
oriented are implemented as "Web services", and these are often exclusively perceived as using the SOAP stack of protocols. Our goal
is to describe that "Web services" can also use other technologies, such as RESTful implementations on top of HTTP. Furthermore, we
will explain how a disciplined process can lead from the business level, which is mainly about identifying services on an abstract level, to
an IT architecture, and that it is important to not impose architectural constraints (such as defining service in a function-oriented way 24
rather than in a resource-oriented way) too early in the process.

RESTful Webservices

REST = Representational State Transfer

— Based on Chapter 5 of Roy Fielding’s 2000 PhD
thesis (it is in your reading list!)

An architectural style for building loosely
coupled systems

The Web itself is an instance of that style
Web Services can be built on top of it

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

26

Addressability

* An addressable application

— exposes the interesting aspects of its dataset as
resources

— exposes a URI for every piece of information it
might serve

— which is usually an infinite number of URIs

Addressability

* A resource

— is anything that is important enough to be
referenced as a thing in itself

— usually something
* you want to serve information about

* that can be represented as a stream of bits
— actors
— movies

— a resource must have at least one name (URI)

Addressability

* Resource names (URIs)
— the URI is the name and address of a resource
— a resource’s URI should be descriptive

http://example.com/movies

instead of

http://example.com/overview.php?list=all,type=movie

29

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

30

Uniform Interface

 The same set of operations applies to
everything (every resource)

* A small set of verbs (methods) applied to a
large set of nouns (resources)

— verbs are universal and not invented on a per-
application base

* Natural language works in the same way (new
verbs rarely enter language)

Uniform Interface

* HTTP defines a small set of verbs (methods)
for acting on URI-identified resources

Which methods (verbs) are defined in HTTP?

32

Uniform Interface

e RESTful Web Services use HTTP to its full
extent

— Methods: GET, POST, PUT, DELETE, {...)

— Request headers: Authorization, Content-Type,
Last-Modified

— Response Codes: 200 OK, 304 Not Modified, 401
Unauthorized, 500 Internal Server Error

— Body: an envelope for data to be transported
fromAtoB

Uniform Interface

 With HTTP we have all methods we need to
manipulate Web resources (CRUD interface)

— Create = POST (or PUT)
— Read = GET

— Update = PUT

— Delete = DELETE

Traditional CRUD

REST CRUD

Mapping Web Service Operations to CRUD

C(reate):

— order at Etsy, message on Facebook wall, ???
R(read):

— 7?77

U(pdate):

— user account on Etsy, 77?7

D(elete):

— order at Etsy, ??7?

Safe and Idempotent Behavior

* Safe methods can be ignored or repeated
without side-effects: GET and HEAD

* |[dempotent methods can be repeated without
side-effects: PUT and DELETE

* Unsafe and non-idempotent methods should
be treated with care: POST

36

Uniform Interface

e CREATE a new resource with HTTP POST

Client Server

-~ POST /movies HTTP/1.1
4 ———1 Host: example.com
<movie ... />

201 Created
Location: http://example.com/movies/1234

\

-«

l

l4——1 400 Bad Request

\

g——1 500 Internal Server Error

\

Example POST Request

POST /movies HTTP/1.1
Host: example.com

<?xml...>
<movie>
<title>The Godfather</title>
<synopsis>...</synopsis>
</movie>

POST Semantics

e POST creates a new resource
e The server decides on the resource’s URI

 POST is not idempotent

— A sequence of two or more POST requests has side-
effects

— Human Web:
* “Do you really want to post this form again?”
e “Are you sure you want to purchase that item again?”

— Programmatic Web:
* if you post twice, you create two resources

Uniform Interface

e CREATE a new resource with HTTP PUT

Client Server
/ | PUT /movies/1234 HTTP/1.1
y —1 Host: example.com ———p ,;;;;::;;;;;;EE z
<movie ... /> e
< 200 OK

/

| @——— 404 Not Found

\

> 409 Conflict

\

¢—— 1 500 Internal Server Error

\

Example PUT Request

PUT /movies/1234 HTTP/1.1
Host: example.com

<?xml...>
<movie>
<title>The Godfather</title>
<synopsis>...</synopsis>
</movie>

PUT Semantics

e PUT creates a new resource
e The client decides on the resource’s URI
e PUT is idempotent

— multiple PUT requests have no side effects
— but it changes the resource state

42

Create with PUT or POST?

* The generic answer: it depends ©

e Considerations

— PUT if client
e can decide on the URI
* sends complete representation to the server

— POST if server creates the URI (algorithmically)
— some firewalls only allow GET and POST
— POST is common practice

CREATE with PUT Example

Create Amazon S3 bucket

PUT / HTTP/1.1
Host: colorpictures.s3.amazonaws.com
Content-Length: 0

Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS 15B4D3461F177624206A:xQEO0diMbLRepdf3YB+FIEXAMPLE=

Add Object to a bucket
PUT /my-image.jpg HTTP/1.1

Host: colorpictures.amazonaws.com
Date: Wed, 12 Oct 2009 17:50:00 GMT

Uniform Interface

* READ an existing resource with HTTP GET

Client Server
/ GET /movies/1234 HTTP/1.1
Host: example.com >
| 200 OK
<movie ... />

lg———1 404 Not Found

\

g—— 500 Internal Server Error

\

Example GET Request / Response

Request:

GET /movies/1234 HTTP/1.1
Host: example.com
Accept: application/xml

Response:

HTTP/1.1 200 OK
Date:
Content-Type: application/xml

<?xml...>
<movie>
<title>The Godfather</title>
<synopsis>...</synopsis>
</movie>

GET Semantics

* GET retrieves the representation (= the
current state) of a resource

* GET is safe (implies idempotent)
— does not change state of resource

— has no side-effects
* |f GET goes wrong
— GET it again!
— no problem because it safe (and idempotent)

Uniform Interface

 UPDATE an existing resource with HTTP PUT

Client Server

/ | PUT /movies/1234 HTTP/1.1
y —— Host: example.com
<movie ... />

200 OK

\

-

l

<@—— 404 Not Found

\

q—— 409 Conflict

\

¢—— 500 Internal Server Error

\

When PUT goes wrong

* If we get 5xx error, or some 4xx errors
— simply PUT again!
— no problem, because PUT is idempotent

* |f we get errors indicating incompatible states
then do some forward/backward compensation
work and maybe PUT again

— 409 Conflict (e.g., change your username to a name
that is already taken)

— 417 Expectation Failed (the server won’t accept your
representation — fix it, if possible)

Uniform Interface

* DELETE an existing resource with HTTP DELETE

Client Server
DELETE /movies/1234 HTTP/1.1 — g
Host: example.com -
¢ 200 OK

l

l@——1 404 Not Found

\

l@——1 405 Method Not Allowed

\

<¢—— 500 Internal Server Error

\

50

DELETE Semantics

e Stop the resource from being accessible
— logical delete
— not necessarily physical

* |f DELETE goes wrong
— try it again!
— DELETE is idempotent

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

52

Connectedness

* |n RESTful services, resource representations are
hypermedia

* Served documents contain not just data, but also links
to other resources

HTTP/1.1 200 OK
Date: ...
Content-Type: application/xml

<?xml...>

<movie>
<title>The Godfather</title>
<synopsis>...</synopsis>
<actor>http://example.com/actors/567</actor>

</movie>

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

54

Statelessness

e Statelessness = every HTTP request executes
in complete isolation

* The request contains all the information
necessary for the server to fulfill that request

e The server never relies on information from a
previous request

— if information is important (e.g., user-
authentication), the client must send it again

Statelessness

This constraint does not say “stateless applications”!
— for many RESTful applications, state is essential

— e.g., shopping carts

It means to move state to clients or resources

State in resources

— the same for every client working with the service

— when a client changes resource state other clients see this
change as well

State in clients (e.g., cookies)
— specific to client and has to be maintained by each client
— makes sense for maintaining session state (login / logout)

State in the Application

Resources

Products

User Agent Application
e e e e >
"Y"AHOO.' — <
= M o
== Tins .
=€ - o 5| | Shopping
= < Carts

Session-ldentified State

© Erik Wilde: http://dret.net/netdret/docs/rest-icwe%QlO/

Users

User Agent
asico! —
= e
= = —) 'EE“
= - anais
—i =

Statelessness

Application

Application State (User Session)

Resources
> Products
» Users

» Shopping

© Erik Wilde: http://dret.net/netdret/docs/rest-icwe%QlO/

Carts

State as a Resource

Statelessness

Scenario 1 Application 1 Resources
2 . >
i [Products

Application 2 Users

> Shopping
Carts

© Erik Wilde: http://dret.net/netdret/docs/rest-icwe%QlO/

Tools and Frameworks

Ruby on Rails - a framework for building RESTful Web applications

— http://www.rubyonrails.org/
Restlet - framework for mapping REST concepts to Java classes

— http://www.restlet.org

Django - framework for building RESTful Web applications in Python

JAX-RC specification (http://jsr311.java.net/) provides a Java API for
RESTful Web Services over the HTTP protocol.

RESTEasy (http://www.jboss.org/resteasy/) - JBoss project that provides
various frameworks for building RESTful Web Services and RESTful Java

applications. Fully certified JAX-RC implementation.

Readings

* Fielding, Roy: Architectural Styles and the
Design of Network-based Software
Architectures (Chapters 4-6):
http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

e Tutorial Design Principles, Patterns and
Emerging Technologies for RESTful Web
Services (Cesare Pautasso and Erik Wilde):
http://dret.net/netdret/docs/rest-icwe2010/

