- About
- Courses
- Research
- Computational Social Science
- Critical Data Studies
- Data Science
- Economics and Information
- Education Technology
- Ethics, Law and Policy
- Human-Computer Interaction
- Human-Robot Interaction
- Incentives and Computation
- Infrastructure Studies
- Interface Design and Ubiquitous Computing
- Natural Language Processing
- Network Science
- Social Computing and Computer-supported Cooperative Work
- Technology and Equity
- People
- Career
- Undergraduate
- Info Sci Majors
- BA - Information Science (College of Arts & Sciences)
- BS - Information Science (CALS)
- BS - Information Science, Systems, and Technology
- MPS Early Credit Option
- Independent Research
- CPT Procedures
- Student Associations
- Undergraduate Minor in Info Sci
- Our Students and Alumni
- Graduation Info
- Contact Us
- Info Sci Majors
- Masters
- PHD
- Prospective PhD Students
- Admissions
- Degree Requirements and Curriculum
- Grad Student Orgs
- For Current PhDs
- Diversity and Inclusion
- Our Students and Alumni
- Graduation Info
- Program Contacts and Student Advising
Colloquium Speaker Gabe Cohn, PhD candidate in Electrical Engineering in the Ubiquitous Computing Lab at the University of Washington, will be giving a talk jointly sponsored by the Information Science, Computer Science and Electrical Engineering Departments.
Talk Title: Building Embedded Sensor Systems to Bring Ubicomp to Life
Abstract: Although we have successfully created smaller, faster, and cheaper computer devices, several adoption barriers remain to realize the dream of Ubiquitous Computing (Ubicomp). By lowering these barriers, we can seamlessly embed human-computer interfaces into our home and work environments. My work focuses on building integrated hardware/software sensing systems for Ubicomp applications using my expertise in embedded systems, low-energy hardware design, and sensing, in addition to integrating communications, signal processing, and machine learning. In this talk, I will use my research to present three main techniques to lower the installation, maintenance, and scalability adoption barriers and bring Ubicomp to life. First, I will discuss how the conductive properties of the human body can be leveraged to enable novel human-computer interactions and health sensing opportunities. Second, I will discuss my work on using the existing infrastructure in buildings to reduce the number of sensors required to enable many Ubicomp applications. Finally, I will describe techniques for dramatically reducing the power consumption of embedded sensor systems for Ubicomp applications. By continually working on application-driven interdisciplinary research, we can lower the adoption barriers and enable many new high-impact application domains.
Bio:
Gabe Cohn is a Ph.D. candidate in Electrical Engineering in the Ubiquitous Computing (Ubicomp) Lab at the University of Washington, advised by Shwetak Patel. His research focuses on (1) designing and implementing ultra-low-power embedded sensing systems, (2) leveraging physical phenomena to enable new sensing modalities for human-computer interaction, and (3) developing sensor systems targeted at realizing immediate change in high-impact application domains. He was awarded the Microsoft Research Ph.D. Fellowship in 2012, the National Science Foundation Graduate Research Fellowship in 2010, and 6 Best Paper awards and nominations. He is the co-founder of SNUPI Technologies (www.wallyhome.com), a sensor and services company focused on home safety, security, and loss prevention. He received his B.S. with honors in Electrical Engineering from the California Institute of Technology in 2009, where he specialized in embedded systems, computer architectures, and digital VLSI.